Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
FASEB J ; 38(9): e23622, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703029

RESUMO

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Assuntos
Endometriose , RNA Longo não Codificante , Proteínas de Ligação a RNA , Adulto , Feminino , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Decídua/metabolismo , Decídua/patologia , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Infertilidade Feminina/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Estromais/metabolismo , Proteínas Smad , Adulto Jovem
2.
J Plant Physiol ; 297: 154256, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657393

RESUMO

Basic helix-loop-helix (bHLH) transcription factors play various important roles in plant growth and development. In this study, a AabHLH48 was identified in the floral organ of Adonis amurensis, a perennial herb that can naturally complete flowering at extreme low temperatures. AabHLH48 was widely expressed in various tissues or organs of A. amurensis and was localized in the nucleus. Overexpression of AabHLH48 promotes early flowering in Arabidopsis under both photoperiod (12 h light/12 h dark and 16 h light/8 h dark) and temperature (22 and 18 °C) conditions. Transcriptome sequencing combined with quantitative real-time PCR analysis showed that overexpression of AabHLH48 caused a general upregulation of genes involved in floral development in Arabidopsis, especially for AtAGAMOUS-LIKE 8/FRUITFULL (AtAGL8/FUL). The yeast one-hybrid assay revealed that AabHLH48 has transcriptional activating activity and can directly bind to the promoter region of AtAGL8/FUL. These results suggest that the overexpression of AabHLH48 promoting early flowering in Arabidopsis is associated with the upregulated expression of AtAGL8/FUL activated by AabHLH48. This indicates that AabHLH48 can serve as an important genetic resource for improving flowering-time control in other ornamental plants or crops.

3.
Diabetes Obes Metab ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660748

RESUMO

AIMS: To investigate whether gamma-aminobutyric acid (GABA) supplementation improves insulin resistance during olanzapine treatment in mice and to explore the underlying mechanisms. MATERIALS AND METHODS: Insulin resistance and body weight gain were induced in mice by 10 weeks of olanzapine treatment. Simultaneously, the mice were administered GABA after 4 weeks of olanzapine administration. RESULTS: We found that mice treated with olanzapine had lower GABA levels in serum and subcutaneous white adipose tissue (sWAT). GABA supplementation restored GABA levels and improved olanzapine-induced lipid metabolism disorders and insulin resistance. Chronic inflammation in adipose tissue is one of the main contributors to insulin resistance. We found that GABA supplementation inhibited olanzapine-induced adipose tissue macrophage infiltration and M1-like polarization, especially in sWAT. In vitro studies showed that stromal vascular cells, rather than adipocytes, were sensitive to GABA. Furthermore, the results suggested that GABA improves olanzapine-induced insulin resistance at least in part through a GABAB receptor-dependent pathway. CONCLUSIONS: These findings suggest that targeting GABA may be a potential therapeutic approach for olanzapine-induced metabolic disorders.

4.
ACS Appl Mater Interfaces ; 16(12): 15632-15639, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489749

RESUMO

Fundamentally suppressing Li dendrite growth is known to be critical for realizing the potential high energy density for Li-metal batteries (LMBs). Inspired by the ionic transport function of proteins, we previously discovered that utilizing natural proteins was able to stabilize the Li anode but have not demonstrated how a specific amino acid of the protein enabled the function. In this study, we decorate the separator with Leucine (Leu) amino acid assisted by poly(acrylic acid) (PAA) for effectively stabilizing the Li-metal anode, so as to dramatically improve the cycling performance of LMBs. The decorated separator improves electrolyte wettability and effectively suppresses Li dendrite growth. As a result, the amino acid-enabled separator prolongs the cycle life of the symmetrical Li|Li cells, exhibits higher Coulombic efficiency in the Li|Cu cells, and improves the cycling performance in LMBs with the LiFePO4 cathode. This work is an initial study on applying a specific amino acid of proteins to enhance the performance of batteries, providing a new strategy on guiding Li+ deposition, and laying an important foundation for functional separator design of high-energy-density batteries.

5.
J Nat Med ; 78(2): 393-402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38175326

RESUMO

Akebia saponin D (ASD) is a bioactive triterpenoid saponin extracted from Dipsacus asper Wall. ex DC.. This study aimed to investigate the effects of ASD on allergic airway inflammation. Human lung epithelial BEAS-2B cells and bone marrow-derived mast cells (BMMCs) were pretreated with ASD (50, 100 and 200 µΜ) and AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) (1 mM), and then stimulated with lipopolysaccharide (LPS) or IL-33. Pretreatment with ASD and AICAR significantly inhibited TNF-α and IL-6 production from BEAS-2B cells, and IL-13 production from BMMCs. Moreover, pretreatment with ASD and AICAR significantly increased p-AMPK expression in BEAS-2B cells. Inhibition of AMPK by siRNA and compound C partly abrogated the suppression effect of ASD on TNF-α, IL-6, and IL-13 production. Asthma murine model was induced by ovalbumin (OVA) challenge and treated with ASD (150 and 300 mg/kg) or AICAR (100 mg/kg). Infiltration of eosinophils, neutrophils, monocytes, and lymphocytes, and production of TNF-α, IL-6, IL-4, and IL-13 were attenuated in ASD and AICAR treated mice. Lung histopathological changes were also ameliorated after ASD and AICAR treatment. Additionally, it showed that treatment with ASD and AICAR increased p-AMPK expression in the lung tissues. In conclusion, ASD exhibited protective effects on allergic airway inflammation through the induction of AMPK activation.


Assuntos
Saponinas , Fator de Necrose Tumoral alfa , Camundongos , Humanos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Interleucina-6 , Interleucina-13 , Inflamação/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Camundongos Endogâmicos BALB C
6.
Neuroscience ; 540: 48-67, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38272300

RESUMO

Anesthesia/surgery have been identified as potential factors contributing to perioperative neurocognitive disorders, with a notably heightened risk observed in aging populations. One of the primary drivers of this impairment is believed to be neuroinflammation, specifically inflammation of hippocampal microglia. Dietary restriction has demonstrated a favorable impact on cognitive impairment across various disorders, primarily by quelling neuroinflammation. However, the precise influence of dietary restriction on perioperative neurocognitive disorders remains to be definitively ascertained. This investigation aims to explore the effects of dietary restriction on perioperative neurocognitive disorders and propose innovative therapeutic strategies for their management. The model of perioperative neurocognitive disorder was induced through exploratory laparotomy under isoflurane anesthesia. Cognitive performance was evaluated using the open field test, Barnes maze test, and fear conditioning test. The enzyme-linked immunosorbent assay (ELISA) was employed to quantify concentrations of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in both serum and hippocampal samples. The Western blot technique was utilized to assess expression levels of hippocampal PSD 95, Synaptophysin, TLR4, MyD88, and NF-kB p65. Microglial polarization was gauged using a combination of reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence labeling techniques. We conducted 16S rRNA sequencing to investigate the impact of dietary restriction on the intestinal flora of aged mice following anesthesia/surgery. Our findings indicate that dietary restrictions have the potential to ameliorate anesthesia/surgery-induced cognitive dysfunction. This effect is achieved through the modulation of gut microbiota, suppression of inflammatory responses in hippocampal microglia, and facilitation of neuronal repair and regeneration.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Camundongos , Animais , Doenças Neuroinflamatórias , Disbiose/metabolismo , RNA Ribossômico 16S/metabolismo , Disfunção Cognitiva/metabolismo , Interleucina-6/metabolismo , Microglia/metabolismo , Camundongos Endogâmicos C57BL
7.
Sci Total Environ ; 912: 168947, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043820

RESUMO

Formaldehyde (FA) exposure has been reported to induce or aggravate allergic asthma. Infection is also a potential risk factor for the onset and aggravation of asthma. However, no study has addressed the effects of FA exposure on asthmatic patients with respiratory infection. FA is ubiquitous in environment and respiratory infections are common in clinics. Therefore, it is necessary to explore whether FA exposure leads to the further worsening of symptoms in asthma patients with existing respiratory infection. In the present study, ovalbumin (OVA) was used to establish the murine asthma model. Lipopolysaccharide (LPS) was intratracheal administrated to mimic asthma with respiratory infection. The mice were exposed to 0.5 mg/m3 FA. FA exposure did not induce a significant aggravation on OVA induced allergic asthma. However, the lung function of specific airway resistance (sRaw), histological changes and cytokines production were greatly aggravated by FA exposure in OVA/LPS induced murine asthma model. Monocyte-derived macrophages (MDMs) were isolated from asthmatic patients. Exposure of MDMs to FA and LPS resulted in increased TNF-α, IL-6, IL-1ß, and nitric oxide (NO) production. Lactate produciton and lactate dehydrogenase A (LDHA) expression were found to be upregulated by FA in OVA/LPS induced asthmatic mice and LPS stimulated MDMs. Furthermore, glycolysis inhibitor 2-Deoxy-d-glucose attenuated FA and LPS induced TNF-α, IL-6, IL-1ß, and NO production. We conclude that FA exposure can lead to the aggravation of allergic asthma with infection through induction of glycolysis. This study could offer some new insight into how FA promotes asthma development.


Assuntos
Asma , Lipopolissacarídeos , Hipersensibilidade Respiratória , Humanos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Asma/metabolismo , Inflamação , Formaldeído/toxicidade , Glicólise , Modelos Teóricos , Camundongos Endogâmicos BALB C , Pulmão , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo
8.
Poult Sci ; 103(1): 103184, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918306

RESUMO

Xylooligosaccharide (XOS) is known as a prebiotic, however, it is unknown whether XOS can directly protect against bacterial infection. This study aimed to investigate the direct inhibitory effects of XOS on Salmonella Typhimurium colonization and the inductive impairments in gut health and growth performance in broilers. We first probed the inhibitory effects of XOS on S. Typhimurium adhesion and its induction of intestinal epithelial cell (IPEC-J2) injuries. Afterward, 168 one-day-old yellow-feathered broilers were randomly divided into 3 groups (7 replicates/group): negative control (NC, received a basal diet), positive control (PC, received a basal diet with S. Typhimurium challenge) and XOS group (PC birds + 1,500 mg/kg XOS). All birds except those in NC were orally challenged with S. Typhimurium from 8 to 10 d of age. Parameters were analyzed on d 11. The results showed that XOS inhibited S. Typhimurium adhesion and the inductive injuries of IPEC-J2 cells by lowering (P < 0.05) certain adhesion-related genes expression of this bacterium. It also alleviated S. Typhimurium-induced increase (P < 0.05) in the expression of certain inflammatory cytokines and tight junction (TJ) proteins of IPEC-J2 cells. Supplementing XOS to S. Typhimurium-challenged broilers attenuated the elevations (P < 0.05) in S. Typhimurium colonization of ileal mucosa and its translocation to the liver and spleen, as well as increased (P < 0.05) certain TJ proteins expression of ileum. Besides, XOS addition normalized S. Typhimurium-induced impairments (P < 0.05) in ileal morphology, final body weight and average daily gain in broilers. Collectively, supplemental XOS directly suppressed intestinal colonization of S. Typhimurium by diminishing its adhesiveness and subsequently mitigated destructions in intestinal barriers, thus contributing to weaken growth retardation in challenged broilers. Our findings provide a new insight into the mechanisms of XOS limiting Salmonella infection in chickens.


Assuntos
Salmonelose Animal , Salmonella typhimurium , Animais , Galinhas , Salmonelose Animal/prevenção & controle , Salmonelose Animal/microbiologia , Dieta/veterinária
10.
Proc Natl Acad Sci U S A ; 120(8): e2210385120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787350

RESUMO

Immunotherapy holds great promise for the treatment of aggressive and metastatic cancers; however, currently available immunotherapeutics, such as immune checkpoint blockade, benefit only a small subset of patients. A photoactivatable toll-like receptor 7/8 (TLR7/8) nanoagonist (PNA) system that imparts near-infrared (NIR) light-induced immunogenic cell death (ICD) in dying tumor cells in synchrony with the spontaneous release of a potent immunoadjuvant is developed here. The PNA consists of polymer-derived proimmunoadjuvants ligated via a reactive oxygen species (ROS)-cleavable linker and polymer-derived photosensitizers, which are further encapsulated in amphiphilic matrices for systemic injection. In particular, conjugation of the TLR7/8 agonist resiquimod to biodegradable macromolecular moieties with different molecular weights enabled pharmacokinetic tuning of small-molecule agonists and optimized delivery efficiency in mice. Upon NIR photoirradiation, PNA effectively generated ROS not only to ablate tumors and induce the ICD cascade but also to trigger the on-demand release of TLR agonists. In several preclinical cancer models, intravenous PNA administration followed by NIR tumor irradiation resulted in remarkable tumor regression and suppressed postsurgical tumor recurrence and metastasis. Furthermore, this treatment profoundly shifted the tumor immune landscape to a tumoricidal one, eliciting robust tumor-specific T cell priming in vivo. This work highlights a simple and cost-effective approach to generate in situ cancer vaccines for synergistic photodynamic immunotherapy of metastatic cancers.


Assuntos
Neoplasias , Receptor 7 Toll-Like , Animais , Camundongos , Receptor 7 Toll-Like/agonistas , Espécies Reativas de Oxigênio , Imunoterapia/métodos , Neoplasias/terapia , Adjuvantes Imunológicos , Polímeros/química , Vacinação , Linhagem Celular Tumoral
11.
J Steroid Biochem Mol Biol ; 229: 106250, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708934

RESUMO

Vitamin D is a steroid hormone precursor that was initially recognized for its important roles in calcium-phosphate homeostasis and bone health. However, the resent prevalence of vitamin D deficiency has highlighted its non-skeletal function, such as its important role in regulating endogenous metabolism. The aim of the present study was to examine the roles of vitamin D supplementation or deficiency on metabolic phenotypes in both male and female mice by using targeted metabolomics analysis. Six weeks old C57BL/6 mice of different sexes were fed with standard chow diet (1000 IU/kg vitamin D3 contained), vitamin D deficient diet (0 IU/kg vitamin D3 contained), or vitamin D enriched diet (10,000 IU/kg vitamin D3 contained) for a total of 14 weeks. Liver pathological analysis showed that vitamin D deficiency caused significant fat deposition in both male and female mice. While vitamin D supplementation was found to improve the accumulation of fat in the liver tissue. Metabolomics analysis indicated that metabolic perturbation related to vitamin D regulation in male mice mainly involved in tricarboxylic acid cycle, fatty acylcarnitine and fatty acid metabolism, sugar metabolism, glutathione metabolism, steroid hormone and pyrimidine metabolism. Based on the criteria of VIP> 1 in OPLS-DA analysis and P < 0.05 in hypothesis test, a total of 62 metabolites and 78 metabolites were found to be significantly changed in VD-deficiency group and VD-supplement group compared with the control group, respectively. While for female mice, the metabolites disturbance mainly involved in fatty acylcarnitine and fatty acid metabolism, TCA, sugar metabolism, folate cycle, methionine cycle, and purine metabolism. A total of 38 and 57 metabolites were found to be significantly changed (VIP>1 and P < 0.05) in VD-deficiency group and VD-supplement group compared with the control group, respectively. Energy metabolism was the most relevant metabolic pathway for vitamin D regulation in both male and female mice. Sex-specific changes of fatty acyl carnitines and dehydroepiandrosterone were observed in the vitamin D supplementation groups. However, most of the energy metabolism related compounds exhibited the same trend in vitamin D supplementation groups of different sexes. Pearson's correlation analysis indicated that vitamin D was significantly correlated (P < 0.05) with the levels of D-fructose 6-phosphate, D-glucose 1-phosphate, D-glucose 6-phosphate, DL-pyroglutamic acid, 2-oxoglutarate, L-glutamic acid, and fumarate, which were all involved in the sugar metabolism pathway. The results achieved in this study demonstrated that vitamin D significantly regulated the metabolism of lipid and sugar, and the regulation showed a certain sex specificity.


Assuntos
Deficiência de Vitamina D , Vitamina D , Masculino , Camundongos , Feminino , Animais , Camundongos Endogâmicos C57BL , Colecalciferol/farmacologia , Deficiência de Vitamina D/metabolismo , Vitaminas , Suplementos Nutricionais , Açúcares , Glucose , Fenótipo , Hormônios , Fosfatos , Ácidos Graxos
12.
J Mater Chem B ; 10(48): 10128-10138, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468640

RESUMO

A guided bone tissue regeneration membrane (GBRM) is traditionally viewed as an inert physical barrier to isolate soft tissue from the bone defect area. However, as a "foreign body", the implantation of a GBRM would inevitably modulate immune response and subsequently affect bone dynamics. Herein, we developed strontium ion (Sr2+)-based metal-phenolic network complexes (MPNs) as a novel type of bio-filler to manipulate the osteoimmunomodulation of the advanced GBRM. For controllable delivery of Sr2+ depending on the difference in affinity between phenolic ligands and Sr2+, tannic acid (TA), epigallocatechin gallate (EGCG), and epigallocatechin (EGC) were selected to chelate with Sr2+. The formed MPNs were incorporated into PCL nanofibrous membranes by blending electrospinning. Among them, TA/Sr based MPN particles displayed the most sustainable release profile of phenolic ligands and Sr2+. Further investigations demonstrated that Sr2+ could not only directly promote osteogenic differentiation of BMSCs, but also manipulate an anti-inflammatory osteoimmune microenvironment in a synergistic manner with TA, thus enhancing osteogenesis and inhibiting bone resorption. The rat alveolar bone defect model also confirmed that the TA/Sr nanoparticle modified membrane displayed better bone regeneration performance than the pure PCL membrane via inhibiting bone resorption. This work provides a new platform for controllable delivery of bioactive nutrient elements, and holds great promise for advancing multi-functional biocomposites.


Assuntos
Reabsorção Óssea , Regeneração Tecidual Guiada , Ratos , Animais , Osteogênese , Regeneração Óssea , Estrôncio/farmacologia
13.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35957018

RESUMO

Herein, we describe pH and magnetism dual-responsive liquid paraffin-in-water Pickering emulsion stabilized by dynamic covalent Fe3O4 (DC-Fe3O4) nanoparticles. On one hand, the Pickerinfigureg emulsions are sensitive to pH variations, and efficient demulsification can be achieved by regulating the pH between 10 and 2 within 30 min. The dynamic imine bond in DC-Fe3O4 can be reversibly formed and decomposed, resulting in a pH-controlled amphiphilicity. The Pickering emulsion can be reversibly switched between stable and unstable states by pH at least three times. On the other hand, the magnetic Fe3O4 core of DC-Fe3O4 allowed rapid separation of the oil droplets from Pickering emulsions under an external magnetic field within 40 s, which was a good extraction system for purifying the aqueous solution contaminated by rhodamine B. The dual responsiveness enables Pickering emulsions to have better control of their stability and to be applied more broadly.

14.
Molecules ; 27(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35807534

RESUMO

Polymer materials with excellent physicochemical and electrical properties are desirable for energy storage applications in advanced electronics and power systems. Here, Al2O3@ZrO2 nanoparticles (A@Z) with a core-shell structure are synthesized and introduced to a P(VDF-HFP) matrix to fabricate P(VDF-HFP)/A@Z nanocomposite films. Experimental and simulation results confirm that A@Z nanoparticles increase the crystallinity and crystallization temperature owing to the effect of the refined crystal size. The incorporation of A@Z nanoparticles leads to conformational changes of molecular chains of P(VDF-HFP), which influences the dielectric relaxation and trap parameters of the nanocomposites. The calculated total trapped charges increase from 13.63 µC of the neat P(VDF-HFP) to 47.55 µC of P(VDF-HFP)/5 vol%-A@Z nanocomposite, indicating a substantial improvement in trap density. The modulated crystalline characteristic and interfaces between nanoparticles and polymer matrix are effective in inhibiting charge motion and impeding the electric conduction channels, which contributes to an improved electrical property and energy density of the nanocomposites. Specifically, a ~200% and ~31% enhancement in discharged energy density and breakdown strength are achieved in the P(VDF-HFP)/5 vol%-A@Z nanocomposite.

15.
ACS Nano ; 16(7): 10242-10259, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35820199

RESUMO

The clinical success of anticancer therapy is usually limited by drug resistance and the metastatic dissemination of cancer cells. Mitochondria are essential generators of cellular energy and play a crucial role in sustaining cell survival and metastatic escape. Selective drug strategies targeting mitochondria are able to rewire mitochondrial metabolism and may provide an alternative paradigm to treat many aggressive cancers with high efficiency and low toxicity. Here, we present a pseudo-stealthy mitochondria-targeted pro-nanotaxane and test it against recurrent and metastatic tumor xenografts. The nanoparticle encapsulates a mitochondria-targetable pro-taxane agent, which can be converted into the chemically unmodified cabazitaxel drug, with further surface cloaking with a low-density lipophilic triphenylphosphonium cation. The resultant nanotaxane could be effectively taken up by cells and consequently specifically localized to the mitochondria. The in situ activated cabazitaxel causes mitochondrial dysfunction and ultimately results in potent cell apoptosis. After intravenous administration to animals, pro-nanotaxane mimics the stealthy behavior of polyethylene glycol-cloaked nanoparticles to provide a long circulation time. The antitumor efficacy of this mitochondria-targeted system was validated in multiple preclinical drug-resistant tumor models. Notably, in a patient-derived metastatic melanoma model that was initially pretreated with cabazitaxel, nanotaxane administration not only produced durable tumor reduction but also substantially suppressed metastatic recurrence. Taken together, these results demonstrate that this combination of a pseudo-stealthy platform with a rationally designed pro-drug is an attractive approach to target mitochondria and enhance drug efficacy.


Assuntos
Nanopartículas , Neoplasias , Animais , Humanos , Biogênese de Organelas , Mitocôndrias , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
16.
RSC Adv ; 12(26): 16763-16771, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754896

RESUMO

Apolipoproteins (Apos) play an important role in regulating plasma lipid concentration. Complex disorders of Apos are highly related with diabetes mellitus, cardiovascular and other diseases. Direct measures of lipoprotein fractions for risk assessment suffer from inaccuracy in the dyslipidemia and pathological states. Therefore, a reliable precise assay will be of high clinical utility. LC-MS/MS methods with multiple reaction monitoring modes have proven suitable for multiplexed quantification. We aimed to develop a simple, cost-effective and amenable LC-MS/MS assay for quantification of ApoA-I, ApoE and ApoJ in human plasma. Standards were constructed from substitute matrix and proteotypic peptides for external calibration and corresponding stable isotope labeled peptides were added as internal standards to remove matrix effects. Analytical validation of the assay included the assessment of linearity, accuracy (RE: -3.02% to 5.32%), intra-assay precision (RSD: 2.50% to 6.56%), inter-assay precision (RSD: 0.78% to 6.68%), spiking recovery rate (accuracy: 87.17% to 112.71%), matrix effect (accuracy: 88.03% to 114.87%), and reproducibility and repeatability of sample preparation (RSD: 1.95% to 7.26%). The performance of proteotypic peptides ApoA-I, ApoE and ApoJ was sufficient for triplex quantitation within a linear range from 16.26 to 1626.41 pmol mL-1, 1.03 to 103.35 pmol mL-1 and 0.86 to 86.46 pmol mL-1 respectively. For all quantified peptides, the determination coefficient (R 2) was >0.997. Besides, the validated LC-MS/MS method has been successfully applied to the quantification of plasma samples in diabetes mellitus and cardiovascular diseases. We anticipate that this assay may provide an alternative method for future clinical applications.

17.
Arch Toxicol ; 96(5): 1213-1225, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35226135

RESUMO

Enterotoxigenic Escherichia coli (ETEC) in humans and animals colonizes the intestine and thereafter secrets heat-stable enterotoxin (ST) with or without heat-labile enterotoxin (LT), which triggers massive fluid and electrolyte secretion into the gut lumen. The crosstalk between the cyclic nucleotide-dependent protein kinase/cystic fibrosis transmembrane conductance regulator (cAMP or cGMP/CFTR) pathway involved in ETEC-induced diarrhea channels, and the canonical Wnt/ß-catenin signaling pathway leads to changes in intestinal stem cell (ISC) fates, which are strongly associated with developmental disorders caused by diarrhea. We review how alterations in enterotoxin-activated ion channel pathways and the canonical Wnt/ß-catenin signaling pathway can explain inhibited intestinal epithelial activity, characterize alterations in the crosstalk of cyclic nucleotides, and predict harmful effects on ISCs in targeted therapy. Besides, we discuss current deficits in the understanding of enterotoxin-intestinal epithelial cell activity relationships that should be considered when interpreting sequelae of diarrhea.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Enteropatias , Animais , Diarreia/induzido quimicamente , Escherichia coli Enterotoxigênica/metabolismo , Enterotoxinas/metabolismo , Enterotoxinas/toxicidade , Proteínas de Escherichia coli/metabolismo , Intestinos , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Células-Tronco/metabolismo , Via de Sinalização Wnt
18.
J Med Virol ; 94(4): 1494-1501, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34821382

RESUMO

Coronavirus disease 2019 (COVID-19) is a severe respiratory disease caused by the highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As the COVID-19 pandemic continues, mutations of SARS-CoV-2 accumulate. These mutations may not only make the virus spread faster, but also render current vaccines less effective. In this study, we established a reference sequence for each clade defined using the GISAID typing method. Homology analysis of each reference sequence confirmed a low mutation rate for SARS-CoV-2, with the latest clade GRY having the lowest homology with other clades (99.89%-99.93%), and the homology between other clade being greater than or equal to 99.95%. Variation analyses showed that the earliest genotypes S, V, and G had 2, 3, and 3 characterizing mutations in the genome respectively. The G-derived clades GR, GH, and GV had 5, 6, and 13 characterizing mutations in the genome respectively. A total of 28 characterizing mutations existed in the genome of the latest clades GRY. In addition, we found differences in the geographic distribution of different clades. G, GH, and GR are popular in the USA, while GV and GRY are common in the UK. Our work may facilitate the custom design of antiviral strategies depending on the molecular characteristics of SARS-CoV-2.


Assuntos
COVID-19/patologia , SARS-CoV-2/genética , Sequência de Aminoácidos , COVID-19/virologia , Humanos , Mutação , Filogenia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Proteínas não Estruturais Virais/genética
19.
Brain Res Bull ; 179: 57-67, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896479

RESUMO

The imbalance of mitochondrial dynamics plays an important role in the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Zinc-finger protein 36 (ZFP36) has been documented to have neuroprotective effects, however, whether ZFP36 is involved in the regulation of neuronal survival during cerebral I/R injury remains unknown. In this study, we found that the transcriptional and translational levels of ZFP36 were increased in immortalized hippocampal HT22 neuronal cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. ZFP36 gene silencing exacerbated OGD/R-induced dynamin-related protein 1 (DRP1) activity, mitochondrial fragmentation, oxidative stress and neuronal apoptosis, whereas ZFP36 overexpression exhibited the opposite effects. Besides, we found that NADPH oxidase 4 (NOX4) was upregulated by OGD/R, and NOX4 inhibition remarkably attenuated OGD/R-instigated DRP1 activity, mitochondrial fragmentation and neuronal apoptosis. Further study demonstrated that ZFP36 targeted NOX4 mRNA directly by binding to the AU-rich elements (AREs) in the NOX4 3'-untranslated regions (3'-UTR) and inhibited NOX4 expression. Taken together, our data indicate that ZFP36 protects against OGD/R-induced neuronal injury by inhibiting NOX4-mediated DRP1 activation and excessive mitochondrial fission. Pharmacological targeting of ZFP36 to suppress excessive mitochondrial fission may provide new therapeutic strategies in the treatment of cerebral I/R injury.


Assuntos
Hipóxia Celular/fisiologia , Dinaminas/metabolismo , Glucose/metabolismo , Hipocampo/metabolismo , Doenças Mitocondriais/metabolismo , NADPH Oxidase 4/metabolismo , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo , Apoptose/fisiologia , Células Cultivadas , Humanos , Dinâmica Mitocondrial/fisiologia , Transdução de Sinais/fisiologia
20.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502271

RESUMO

Adonis amurensis is a perennial herbaceous flower that blooms in early spring in northeast China, where the night temperature can drop to -15 °C. To understand flowering time regulation and floral organogenesis of A. amurensis, the MIKCc-type MADS (Mcm1/Agamous/ Deficiens/Srf)-box genes were identified and characterized from the transcriptomes of the flower organs. In this study, 43 non-redundant MADS-box genes (38 MIKCc, 3 MIKC*, and 2 Mα) were identified. Phylogenetic and conserved motif analysis divided the 38 MIKCc-type genes into three major classes: ABCDE model (including AP1/FUL, AP3/PI, AG, STK, and SEPs/AGL6), suppressor of overexpression of constans1 (SOC1), and short vegetative phase (SVP). qPCR analysis showed that the ABCDE model genes were highly expressed mainly in flowers and differentially expressed in the different tissues of flower organs, suggesting that they may be involved in the flower organ identity of A. amurensis. Subcellular localization revealed that 17 full-length MADSs were mainly localized in the nucleus: in Arabidopsis, the heterologous expression of three full-length SOC1-type genes caused early flowering and altered the expression of endogenous flowering time genes. Our analyses provide an overall insight into MIKCc genes in A. amurensis and their potential roles in floral organogenesis and flowering time regulation.


Assuntos
Adonis/genética , Flores/genética , Flores/metabolismo , Proteínas de Domínio MADS/classificação , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Modelos Genéticos , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA